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Theorem 1. Let R be a commuative Noetherian ring such that Spec(R) is con-
nected and let M be a non-zero, finitely generated R-module of finite projective
dimension. Assume either

(1) R is locally a complete intersectionﬂ and M s 2-torsion free, or
(2) R has characteristic p for an odd prime p.

Then for any finite projective resolution
O—=-FPi— =P —>FPh—->M-—=0

of M we have
ZrankR(Pi) > 2¢

where ¢ = height p(anng(M)), the height of the annihilator ideal of M.

THEOREM 2. Assume (R,m, k) is a local (Noetherian, commutative) ring
of Krull dimension d and that M is a nonzero R-module of finite length and
finite projective dimension. If either

(1) R is the quotient of a regular local ring by a regular sequence of elements
and 2 is invertible in R, or
(2) Rc ' as a subring for an odd prime p,

th¢n 3°; Bi(M) > 2.

sumptions in (1) hold and ¥; B;(M) = 2¢, then M is
isomorphic to the quotient of R by a regqular sequence of d elements.
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With suitable modifications, the proof of Theorem |6] establishes the following
analogue for dg-modules over graded rings:

Theorem 7. Let R be the (cohomologically) graded ring k[t1,...,tq) where k is a
field with char(k) # 2 and ty,...,tq are variables of strictly positive, even degree.
If F is a semi-free dg-R-module having non-zero homology of finite dimension over
k, then

gt |54 (=1)" dimy (3 (F))|
- >, dimg (H;(F))

Zdimk Hz(F QR R/(tl’ coe ’td))
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As an application of Theorem |7, we address the rational cohomology of spaces
admitting(almost\ free torus actions. Let T be a torus of dimension d,

d

-

T=25"x---x 85,

regarded as a topological group. One says that T' acts[almost) freely on a space X
if there is a continuous action of 7' on X such that the stabilizer of each point of
X is a finite subgroup of T'. The Toral Rank Conjecture of Halperin [28| predicts
that if 7" acts almost freely on a sinﬁy connected, compact CW complex X, then

Y dimg HY (X, Q) > 2%
: \f/\/\/ , m :
co if " total vanle  b(x) ore , 4
A [ (T, )| = 2
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The following consequence of Theorem 7| represents partial progress towards a
proof of the Toral Rank Conjecture.

Corollary 8. Suppose a d-dimensional torus T a¢ts (almost] freely on a simply
connected, compact CW complex X and let X/T depote the quotient space. Then

(1= ame mogmofi [ 1 (%) |
L 22 dimg HY(X/T, Q) 7 » X/F\

) " dimg H'(X,Q) > 2¢
[
In particular, if the non-zero rational cohomology of X/T is concentrated in even

degrees, then the Toral Rank Conjecture holds for X.

As an example, suppose X is a simply connected, rationally elliptic space; the
latter condition means that -, dimg m4(X)g < oo, where m4(X)q denotes the ¢
rational homotopy group of X. Suppose also that a d-dimensional torus 7" acts

SY b a4 o
almost freely on X and assume that
Xx(X) = Z(—l)i dimg m;(X)gp = —d.

PR

(m@in general, given such a torus action on such a
space X, one has x.(X) < —dj; see [24, 7.13].) It follows [24, 2.75] that the rational
cohordology of X /T is concentrated in even degrees and thus, by Corollary [8L the
Toral Rank Conjecture holds in this situation.
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Proposition 1.1. Let X be an elliptic space with homotopy Euler characteristic
Xx(X) = —n. If the toral rank of X is n, then the minimal model (A\V,d) of X is
Wo-stage (pure) and satisfies (Vo) = 0 and d(V°99) C A(VEven).
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With this observation made, it is possible to obtain the corollary above directly
(and in most cases to improve the lower bound on the cohomology by a factor of 2
at the same time).

Proposition 1.2. Let X be an elliptic space with minimal model (AV,d) a two-

stage (pure) model that satisfies d(V V") = 0 and d(V°44) C A(Veven). Suppose we

have dim(Vev?) = k and dim(V°99) = k+n, for some n > 0, so that x.(X) =

If k =0 (50 that X has only odd-degree non-zero rational homotopy), then we hcwe “
X;Q)) = 2™. Otherwise, i.e., if k > 1, we have d1m (H*(X;Q)) >2n+t. = L. 2
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Proposition 1.3. Let X be an elliptic space with minimal model (AV,d) a two-stage ’W‘x.

(pure) model that satisfies d(VeV°") = 0 and d(V°d) C A(VV*?). Suppose we have

dim(Ve™) = k and dim(V°I) = k + n, for some n > 0, so that x.(X) = —n.

If kK = 0 (so that X has only odd-degree mon-zero rational homotopy), then we

have dim (H*(X;Q)) = 2™. Otherwise, i.e., if k > 1, we have dim (H*(X;Q)) >

2(k +n) =dim (7.(X) ® Q) + n. 'ﬁ
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