An eigenfunction/eigenvalue-like approach to time-varying queues with periodic transition rates

Barbara Margolius January 24, 2025

Many random phenomena exhibit periodic behavior. These include any processes influenced by the time of day or season of the year; natural phenomena like the tides; automobile and air traffic; call centers, and many other random processes.

In this talk we study a variety of ergodic queueing processes with periodic transition rates. Such processes will settle into a periodic distribution as $t \to \infty$. We describe a method to find this asymptotic periodic distribution for a variety of queueing processes including:

- the single-server queue,
- the multi-server queue,
- the multi-server queue with catastrophes and repair,
- level independent Quasi-Birth-Death process (QBD),
- level independent Quasi-Birth-Death process (QBD) with catastrophes and repair,
- fluid queues in a random environment.

A birth-death process is a stochastic process which permits one step transitions to adjacent states. A quasi-birth-death (QBD) process is a generalization of a birth-death process that uses a two-dimensional state space described by a level and a phase. Transitions are permitted only to adjacent levels. Phase transitions within a level are permitted to any phase based on the transition rates specific to the model. QBD processes are used to model a variety of applications including health care systems, queueing models, communication networks and reliability modeling.